Copied to
clipboard

G = C5×C23.10D4order 320 = 26·5

Direct product of C5 and C23.10D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C23.10D4, (C2×C20)⋊25D4, C23.9(C5×D4), C24.6(C2×C10), C10.92C22≀C2, (C22×D4).3C10, (C22×C10).28D4, C22.70(D4×C10), (C23×C10).6C22, C10.138(C4⋊D4), C2.C4211C10, C10.68(C4.4D4), C23.77(C22×C10), (C22×C10).458C23, (C22×C20).402C22, C10.90(C22.D4), (C2×C4)⋊3(C5×D4), (C2×C4⋊C4)⋊5C10, (C10×C4⋊C4)⋊32C2, (D4×C2×C10).15C2, C2.7(C5×C4⋊D4), (C2×C22⋊C4)⋊7C10, (C10×C22⋊C4)⋊8C2, C2.6(C5×C22≀C2), C2.6(C5×C4.4D4), (C2×C10).610(C2×D4), (C22×C4).6(C2×C10), C22.37(C5×C4○D4), (C2×C10).218(C4○D4), C2.6(C5×C22.D4), (C5×C2.C42)⋊27C2, SmallGroup(320,895)

Series: Derived Chief Lower central Upper central

C1C23 — C5×C23.10D4
C1C2C22C23C22×C10C23×C10D4×C2×C10 — C5×C23.10D4
C1C23 — C5×C23.10D4
C1C22×C10 — C5×C23.10D4

Generators and relations for C5×C23.10D4
 G = < a,b,c,d,e,f | a5=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf=bc=cb, bd=db, ebe-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=ce-1 >

Subgroups: 458 in 238 conjugacy classes, 78 normal (30 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C23.10D4, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, D4×C10, C23×C10, C5×C2.C42, C10×C22⋊C4, C10×C4⋊C4, D4×C2×C10, C5×C23.10D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C2×C10, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C5×D4, C22×C10, C23.10D4, D4×C10, C5×C4○D4, C5×C22≀C2, C5×C4⋊D4, C5×C22.D4, C5×C4.4D4, C5×C23.10D4

Smallest permutation representation of C5×C23.10D4
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 105)(2 101)(3 102)(4 103)(5 104)(6 64)(7 65)(8 61)(9 62)(10 63)(11 125)(12 121)(13 122)(14 123)(15 124)(16 57)(17 58)(18 59)(19 60)(20 56)(21 79)(22 80)(23 76)(24 77)(25 78)(26 130)(27 126)(28 127)(29 128)(30 129)(31 72)(32 73)(33 74)(34 75)(35 71)(36 150)(37 146)(38 147)(39 148)(40 149)(41 135)(42 131)(43 132)(44 133)(45 134)(46 112)(47 113)(48 114)(49 115)(50 111)(51 98)(52 99)(53 100)(54 96)(55 97)(66 117)(67 118)(68 119)(69 120)(70 116)(81 145)(82 141)(83 142)(84 143)(85 144)(86 152)(87 153)(88 154)(89 155)(90 151)(91 138)(92 139)(93 140)(94 136)(95 137)(106 157)(107 158)(108 159)(109 160)(110 156)
(1 45)(2 41)(3 42)(4 43)(5 44)(6 140)(7 136)(8 137)(9 138)(10 139)(11 53)(12 54)(13 55)(14 51)(15 52)(16 141)(17 142)(18 143)(19 144)(20 145)(21 155)(22 151)(23 152)(24 153)(25 154)(26 69)(27 70)(28 66)(29 67)(30 68)(31 156)(32 157)(33 158)(34 159)(35 160)(36 46)(37 47)(38 48)(39 49)(40 50)(56 81)(57 82)(58 83)(59 84)(60 85)(61 95)(62 91)(63 92)(64 93)(65 94)(71 109)(72 110)(73 106)(74 107)(75 108)(76 86)(77 87)(78 88)(79 89)(80 90)(96 121)(97 122)(98 123)(99 124)(100 125)(101 135)(102 131)(103 132)(104 133)(105 134)(111 149)(112 150)(113 146)(114 147)(115 148)(116 126)(117 127)(118 128)(119 129)(120 130)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 23)(7 24)(8 25)(9 21)(10 22)(11 36)(12 37)(13 38)(14 39)(15 40)(16 33)(17 34)(18 35)(19 31)(20 32)(26 43)(27 44)(28 45)(29 41)(30 42)(46 53)(47 54)(48 55)(49 51)(50 52)(56 73)(57 74)(58 75)(59 71)(60 72)(61 78)(62 79)(63 80)(64 76)(65 77)(81 106)(82 107)(83 108)(84 109)(85 110)(86 93)(87 94)(88 95)(89 91)(90 92)(96 113)(97 114)(98 115)(99 111)(100 112)(101 118)(102 119)(103 120)(104 116)(105 117)(121 146)(122 147)(123 148)(124 149)(125 150)(126 133)(127 134)(128 135)(129 131)(130 132)(136 153)(137 154)(138 155)(139 151)(140 152)(141 158)(142 159)(143 160)(144 156)(145 157)
(1 73 54 77)(2 74 55 78)(3 75 51 79)(4 71 52 80)(5 72 53 76)(6 133 19 125)(7 134 20 121)(8 135 16 122)(9 131 17 123)(10 132 18 124)(11 86 44 110)(12 87 45 106)(13 88 41 107)(14 89 42 108)(15 90 43 109)(21 129 34 148)(22 130 35 149)(23 126 31 150)(24 127 32 146)(25 128 33 147)(26 84 40 92)(27 85 36 93)(28 81 37 94)(29 82 38 95)(30 83 39 91)(46 64 70 60)(47 65 66 56)(48 61 67 57)(49 62 68 58)(50 63 69 59)(96 136 105 145)(97 137 101 141)(98 138 102 142)(99 139 103 143)(100 140 104 144)(111 151 120 160)(112 152 116 156)(113 153 117 157)(114 154 118 158)(115 155 119 159)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 25)(17 21)(18 22)(19 23)(20 24)(26 43)(27 44)(28 45)(29 41)(30 42)(46 53)(47 54)(48 55)(49 51)(50 52)(56 87)(57 88)(58 89)(59 90)(60 86)(61 107)(62 108)(63 109)(64 110)(65 106)(71 92)(72 93)(73 94)(74 95)(75 91)(76 85)(77 81)(78 82)(79 83)(80 84)(96 146)(97 147)(98 148)(99 149)(100 150)(101 128)(102 129)(103 130)(104 126)(105 127)(111 124)(112 125)(113 121)(114 122)(115 123)(116 133)(117 134)(118 135)(119 131)(120 132)(136 157)(137 158)(138 159)(139 160)(140 156)(141 154)(142 155)(143 151)(144 152)(145 153)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,105)(2,101)(3,102)(4,103)(5,104)(6,64)(7,65)(8,61)(9,62)(10,63)(11,125)(12,121)(13,122)(14,123)(15,124)(16,57)(17,58)(18,59)(19,60)(20,56)(21,79)(22,80)(23,76)(24,77)(25,78)(26,130)(27,126)(28,127)(29,128)(30,129)(31,72)(32,73)(33,74)(34,75)(35,71)(36,150)(37,146)(38,147)(39,148)(40,149)(41,135)(42,131)(43,132)(44,133)(45,134)(46,112)(47,113)(48,114)(49,115)(50,111)(51,98)(52,99)(53,100)(54,96)(55,97)(66,117)(67,118)(68,119)(69,120)(70,116)(81,145)(82,141)(83,142)(84,143)(85,144)(86,152)(87,153)(88,154)(89,155)(90,151)(91,138)(92,139)(93,140)(94,136)(95,137)(106,157)(107,158)(108,159)(109,160)(110,156), (1,45)(2,41)(3,42)(4,43)(5,44)(6,140)(7,136)(8,137)(9,138)(10,139)(11,53)(12,54)(13,55)(14,51)(15,52)(16,141)(17,142)(18,143)(19,144)(20,145)(21,155)(22,151)(23,152)(24,153)(25,154)(26,69)(27,70)(28,66)(29,67)(30,68)(31,156)(32,157)(33,158)(34,159)(35,160)(36,46)(37,47)(38,48)(39,49)(40,50)(56,81)(57,82)(58,83)(59,84)(60,85)(61,95)(62,91)(63,92)(64,93)(65,94)(71,109)(72,110)(73,106)(74,107)(75,108)(76,86)(77,87)(78,88)(79,89)(80,90)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130), (1,66)(2,67)(3,68)(4,69)(5,70)(6,23)(7,24)(8,25)(9,21)(10,22)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,34)(18,35)(19,31)(20,32)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,113)(97,114)(98,115)(99,111)(100,112)(101,118)(102,119)(103,120)(104,116)(105,117)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,153)(137,154)(138,155)(139,151)(140,152)(141,158)(142,159)(143,160)(144,156)(145,157), (1,73,54,77)(2,74,55,78)(3,75,51,79)(4,71,52,80)(5,72,53,76)(6,133,19,125)(7,134,20,121)(8,135,16,122)(9,131,17,123)(10,132,18,124)(11,86,44,110)(12,87,45,106)(13,88,41,107)(14,89,42,108)(15,90,43,109)(21,129,34,148)(22,130,35,149)(23,126,31,150)(24,127,32,146)(25,128,33,147)(26,84,40,92)(27,85,36,93)(28,81,37,94)(29,82,38,95)(30,83,39,91)(46,64,70,60)(47,65,66,56)(48,61,67,57)(49,62,68,58)(50,63,69,59)(96,136,105,145)(97,137,101,141)(98,138,102,142)(99,139,103,143)(100,140,104,144)(111,151,120,160)(112,152,116,156)(113,153,117,157)(114,154,118,158)(115,155,119,159), (1,66)(2,67)(3,68)(4,69)(5,70)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,25)(17,21)(18,22)(19,23)(20,24)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,87)(57,88)(58,89)(59,90)(60,86)(61,107)(62,108)(63,109)(64,110)(65,106)(71,92)(72,93)(73,94)(74,95)(75,91)(76,85)(77,81)(78,82)(79,83)(80,84)(96,146)(97,147)(98,148)(99,149)(100,150)(101,128)(102,129)(103,130)(104,126)(105,127)(111,124)(112,125)(113,121)(114,122)(115,123)(116,133)(117,134)(118,135)(119,131)(120,132)(136,157)(137,158)(138,159)(139,160)(140,156)(141,154)(142,155)(143,151)(144,152)(145,153)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,105)(2,101)(3,102)(4,103)(5,104)(6,64)(7,65)(8,61)(9,62)(10,63)(11,125)(12,121)(13,122)(14,123)(15,124)(16,57)(17,58)(18,59)(19,60)(20,56)(21,79)(22,80)(23,76)(24,77)(25,78)(26,130)(27,126)(28,127)(29,128)(30,129)(31,72)(32,73)(33,74)(34,75)(35,71)(36,150)(37,146)(38,147)(39,148)(40,149)(41,135)(42,131)(43,132)(44,133)(45,134)(46,112)(47,113)(48,114)(49,115)(50,111)(51,98)(52,99)(53,100)(54,96)(55,97)(66,117)(67,118)(68,119)(69,120)(70,116)(81,145)(82,141)(83,142)(84,143)(85,144)(86,152)(87,153)(88,154)(89,155)(90,151)(91,138)(92,139)(93,140)(94,136)(95,137)(106,157)(107,158)(108,159)(109,160)(110,156), (1,45)(2,41)(3,42)(4,43)(5,44)(6,140)(7,136)(8,137)(9,138)(10,139)(11,53)(12,54)(13,55)(14,51)(15,52)(16,141)(17,142)(18,143)(19,144)(20,145)(21,155)(22,151)(23,152)(24,153)(25,154)(26,69)(27,70)(28,66)(29,67)(30,68)(31,156)(32,157)(33,158)(34,159)(35,160)(36,46)(37,47)(38,48)(39,49)(40,50)(56,81)(57,82)(58,83)(59,84)(60,85)(61,95)(62,91)(63,92)(64,93)(65,94)(71,109)(72,110)(73,106)(74,107)(75,108)(76,86)(77,87)(78,88)(79,89)(80,90)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130), (1,66)(2,67)(3,68)(4,69)(5,70)(6,23)(7,24)(8,25)(9,21)(10,22)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,34)(18,35)(19,31)(20,32)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,113)(97,114)(98,115)(99,111)(100,112)(101,118)(102,119)(103,120)(104,116)(105,117)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,153)(137,154)(138,155)(139,151)(140,152)(141,158)(142,159)(143,160)(144,156)(145,157), (1,73,54,77)(2,74,55,78)(3,75,51,79)(4,71,52,80)(5,72,53,76)(6,133,19,125)(7,134,20,121)(8,135,16,122)(9,131,17,123)(10,132,18,124)(11,86,44,110)(12,87,45,106)(13,88,41,107)(14,89,42,108)(15,90,43,109)(21,129,34,148)(22,130,35,149)(23,126,31,150)(24,127,32,146)(25,128,33,147)(26,84,40,92)(27,85,36,93)(28,81,37,94)(29,82,38,95)(30,83,39,91)(46,64,70,60)(47,65,66,56)(48,61,67,57)(49,62,68,58)(50,63,69,59)(96,136,105,145)(97,137,101,141)(98,138,102,142)(99,139,103,143)(100,140,104,144)(111,151,120,160)(112,152,116,156)(113,153,117,157)(114,154,118,158)(115,155,119,159), (1,66)(2,67)(3,68)(4,69)(5,70)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,25)(17,21)(18,22)(19,23)(20,24)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,87)(57,88)(58,89)(59,90)(60,86)(61,107)(62,108)(63,109)(64,110)(65,106)(71,92)(72,93)(73,94)(74,95)(75,91)(76,85)(77,81)(78,82)(79,83)(80,84)(96,146)(97,147)(98,148)(99,149)(100,150)(101,128)(102,129)(103,130)(104,126)(105,127)(111,124)(112,125)(113,121)(114,122)(115,123)(116,133)(117,134)(118,135)(119,131)(120,132)(136,157)(137,158)(138,159)(139,160)(140,156)(141,154)(142,155)(143,151)(144,152)(145,153) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,105),(2,101),(3,102),(4,103),(5,104),(6,64),(7,65),(8,61),(9,62),(10,63),(11,125),(12,121),(13,122),(14,123),(15,124),(16,57),(17,58),(18,59),(19,60),(20,56),(21,79),(22,80),(23,76),(24,77),(25,78),(26,130),(27,126),(28,127),(29,128),(30,129),(31,72),(32,73),(33,74),(34,75),(35,71),(36,150),(37,146),(38,147),(39,148),(40,149),(41,135),(42,131),(43,132),(44,133),(45,134),(46,112),(47,113),(48,114),(49,115),(50,111),(51,98),(52,99),(53,100),(54,96),(55,97),(66,117),(67,118),(68,119),(69,120),(70,116),(81,145),(82,141),(83,142),(84,143),(85,144),(86,152),(87,153),(88,154),(89,155),(90,151),(91,138),(92,139),(93,140),(94,136),(95,137),(106,157),(107,158),(108,159),(109,160),(110,156)], [(1,45),(2,41),(3,42),(4,43),(5,44),(6,140),(7,136),(8,137),(9,138),(10,139),(11,53),(12,54),(13,55),(14,51),(15,52),(16,141),(17,142),(18,143),(19,144),(20,145),(21,155),(22,151),(23,152),(24,153),(25,154),(26,69),(27,70),(28,66),(29,67),(30,68),(31,156),(32,157),(33,158),(34,159),(35,160),(36,46),(37,47),(38,48),(39,49),(40,50),(56,81),(57,82),(58,83),(59,84),(60,85),(61,95),(62,91),(63,92),(64,93),(65,94),(71,109),(72,110),(73,106),(74,107),(75,108),(76,86),(77,87),(78,88),(79,89),(80,90),(96,121),(97,122),(98,123),(99,124),(100,125),(101,135),(102,131),(103,132),(104,133),(105,134),(111,149),(112,150),(113,146),(114,147),(115,148),(116,126),(117,127),(118,128),(119,129),(120,130)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,23),(7,24),(8,25),(9,21),(10,22),(11,36),(12,37),(13,38),(14,39),(15,40),(16,33),(17,34),(18,35),(19,31),(20,32),(26,43),(27,44),(28,45),(29,41),(30,42),(46,53),(47,54),(48,55),(49,51),(50,52),(56,73),(57,74),(58,75),(59,71),(60,72),(61,78),(62,79),(63,80),(64,76),(65,77),(81,106),(82,107),(83,108),(84,109),(85,110),(86,93),(87,94),(88,95),(89,91),(90,92),(96,113),(97,114),(98,115),(99,111),(100,112),(101,118),(102,119),(103,120),(104,116),(105,117),(121,146),(122,147),(123,148),(124,149),(125,150),(126,133),(127,134),(128,135),(129,131),(130,132),(136,153),(137,154),(138,155),(139,151),(140,152),(141,158),(142,159),(143,160),(144,156),(145,157)], [(1,73,54,77),(2,74,55,78),(3,75,51,79),(4,71,52,80),(5,72,53,76),(6,133,19,125),(7,134,20,121),(8,135,16,122),(9,131,17,123),(10,132,18,124),(11,86,44,110),(12,87,45,106),(13,88,41,107),(14,89,42,108),(15,90,43,109),(21,129,34,148),(22,130,35,149),(23,126,31,150),(24,127,32,146),(25,128,33,147),(26,84,40,92),(27,85,36,93),(28,81,37,94),(29,82,38,95),(30,83,39,91),(46,64,70,60),(47,65,66,56),(48,61,67,57),(49,62,68,58),(50,63,69,59),(96,136,105,145),(97,137,101,141),(98,138,102,142),(99,139,103,143),(100,140,104,144),(111,151,120,160),(112,152,116,156),(113,153,117,157),(114,154,118,158),(115,155,119,159)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,25),(17,21),(18,22),(19,23),(20,24),(26,43),(27,44),(28,45),(29,41),(30,42),(46,53),(47,54),(48,55),(49,51),(50,52),(56,87),(57,88),(58,89),(59,90),(60,86),(61,107),(62,108),(63,109),(64,110),(65,106),(71,92),(72,93),(73,94),(74,95),(75,91),(76,85),(77,81),(78,82),(79,83),(80,84),(96,146),(97,147),(98,148),(99,149),(100,150),(101,128),(102,129),(103,130),(104,126),(105,127),(111,124),(112,125),(113,121),(114,122),(115,123),(116,133),(117,134),(118,135),(119,131),(120,132),(136,157),(137,158),(138,159),(139,160),(140,156),(141,154),(142,155),(143,151),(144,152),(145,153)]])

110 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4J5A5B5C5D10A···10AB10AC···10AR20A···20AN
order12···222224···4555510···1010···1020···20
size11···144444···411111···14···44···4

110 irreducible representations

dim1111111111222222
type+++++++
imageC1C2C2C2C2C5C10C10C10C10D4D4C4○D4C5×D4C5×D4C5×C4○D4
kernelC5×C23.10D4C5×C2.C42C10×C22⋊C4C10×C4⋊C4D4×C2×C10C23.10D4C2.C42C2×C22⋊C4C2×C4⋊C4C22×D4C2×C20C22×C10C2×C10C2×C4C23C22
# reps11411441644446161624

Matrix representation of C5×C23.10D4 in GL6(𝔽41)

3700000
0370000
0037000
0003700
0000180
0000018
,
40310000
010000
0017100
00402400
00002537
00003316
,
100000
010000
001000
000100
0000400
0000040
,
4000000
0400000
0040000
0004000
000010
000001
,
31110000
2100000
0004000
0040000
000090
00001032
,
40310000
010000
0040000
0004000
000010
00003340

G:=sub<GL(6,GF(41))| [37,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[40,0,0,0,0,0,31,1,0,0,0,0,0,0,17,40,0,0,0,0,1,24,0,0,0,0,0,0,25,33,0,0,0,0,37,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[31,2,0,0,0,0,11,10,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,9,10,0,0,0,0,0,32],[40,0,0,0,0,0,31,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,33,0,0,0,0,0,40] >;

C5×C23.10D4 in GAP, Magma, Sage, TeX

C_5\times C_2^3._{10}D_4
% in TeX

G:=Group("C5xC2^3.10D4");
// GroupNames label

G:=SmallGroup(320,895);
// by ID

G=gap.SmallGroup(320,895);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,1766,1731,226]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f=b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c*e^-1>;
// generators/relations

׿
×
𝔽